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ABSTRACT 

The consideration of nanofluids has been paid a good attention on the forced convection; the analysis focusing 

nanofluids in porous media are limited in literature. Thus, the use of nanofluids in porous media would be very 

much helpful in heat and mass transfer enhancement. In this paper, the influence of variable suction, Newtonian 

heating and heat source or sink heat and mass transfer over a permeable shrinking sheet embedded in a porous 

medium filled with a nanofluid is discussed in detail. The solutions of the nonlinear equations governing the 

velocɨty, temperature and concentration profiles are solved numerically using Runge-Kutta Gill procedure 

together with shooting method and graphical results for the resulting parameters are displayed and discussed. 

The influence of the physical parameters on skin-friction coefficient, local Nusselt number and local Sherwood 

number are shown in a tabulated form. 

Keywords: nanofluid, Newtonian heating, heat generation/absorption, Shrinking sheet, wall mass suction. 

 

I. INTRODUCTION 
For industrial application the heat transfer phenomena in boundary layer flow on a stretching or shrinking 

sheet is of great importance. Crane (1970) first studied the flow due to a linear stretching plate. The heat transfer 

in boundary layer flow of Maxwell fluid over a porous shrinking sheet with wall mass transfer is investigated by 

Bhattacharyya et al. (2013). They revealed that the viscous boundary layer thickness reduces with Deborah 

number. 

The influence of internal heat generation in a problem reveals that it affects the temperature distribution 

strongly. Internal heat generation is related in the fields of disposal of nuclear waste, storage of radioactive 

materials, nuclear reactors safely analysis, fire and combustion studies and in many industrial processes. 

Consideration of internal heat generation becomes a key factor in many engineering applications. Heat 

generation can be assumed to be constant or space temperature dependent. Crepeau and Clarksean (1997) 

applied a space dependent heat generation in their study on flow and heat transfer from vertical plate. They 

observed that the exponentially decaying heat generation model can be used in mixtures where a radioactive 

material is surrounded by inert alloys. Makinde (2011) computed similarity solutions for natural convection 

from a moving vertical plate with internal heat generation. It was found that an increase in the exponentially 

decaying internal heat generation causes a further increase in both velocity and thermal boundary layer 

thicknesses. Ganga et al (2015) studied the effects of internal heat generation or absorption on 

magnetohydrodynamic and radiative boundary layer flow of nanofluid over a vertical plate with viscous and 

ohmic dissipation. 

The study of stretched flows with heat transfer is given a much importance. The heat transfer is through 

constant wall temperature or constant wall heat flux. Also there are another class of flow problems in which the 

rate of heat transfer is proporsional to the local surface temperature from the boundary surface with finite heat 

capacity known as Newtonian heating or conjugate convective flow. The boundary layer natural convective flow 

with Newtonian heating is studied by Merkin (1994). Chaudhary et al. (2007) observed the similarity solution 

for unsteady free convection flow past on impulsive vertical surface in the presence of Newtonian heating.  

In this paper, we have study the phenomenon of unsteady forced convection in Newtonian heating under the 

application of uniform porous medium when heat generation or absorption appears in the energy equation in the 

flow of a nanofluid. The flow is induced by a permeable shrinking sheet. The solutions of the nonlinear 

equations governing the velocɨty, temperature and concentration profiles are solved numerically using Runge-

Kutta Gill procedure together with shooting method and graphical results for the resulting parameters are 
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displayed and discussed. The influence of the physical parameters on skin-friction coefficient, local Nusselt 

number and local Sherwood number are shown in a tabulated form. 

 

II. MATHEMATICAL FORMULATION 
Unsteady, two dimensional, forced convection boundary layer flow past a permeable shrinking sheet is 

considered. The sheet is embedded in a porous medium filled with a nanofluid in the presence of internal heat 

generation or absorption and Newtonian heating. The schematic diagram for the present flow model is 

illustrated in figure A.  

                                                                           y 

 

                                                                                                                                               

 

 

 

 

                                                                             O                                                      x             

                                           u = uw(x,t)                                       u = uw(x,t) 

Figure A: Schematic diagram of the physical configuration and coordinate system. 

 

It is assumed that the velocity of the shrinking sheet is  ,wu x t  and the velocity of the mass transfer is 

 ,wv x t , where x is the coordinate measured along the shrinking sheet and t is the time. The standardized wall 

temperature of the sheet Tw and standardized nanoparticle volume fraction Cw are unspoken to be superior to 

the ambient temperature T ͚ and ambient nanoparticle volume fraction C, respectively. 

 With the usual Boussinesq and the boundary layer approximations, the governing equations of 

continuity, momentum, energy and species are written as follows 
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The appropriate boundary conditions for the flow model are written as follows 
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where u and v are the velocity components in the x-direction and y-direction respectively, 𝜐 be kinematic 

viscosity, hc be heat transfer coefficient, hs is mass transfer coefficient, k′ be permeability of the porous medium 

constant, q0 be heat generation or absorption coefficient, σ be electrical conductivity (assumed constant), ρf be 

density of the base fluid, 𝛼m be thermal diffusivity, DB be Brownian diffusion coefficient, DT be thermophoresis 

diffusion coefficient and cp be specific heat at constant pressure. Here τ is the ratio of nanoparticle heat capacity 

and the base fluid heat capacity, T is variable temperature and C is local nanoparticle volume fraction.  

The wall mass transfer velocity then becomes 
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where S is the constant wall mass transfer parameter with S > 0 for suction and S < 0 for injection, respectively. 

The equation of continuity is satisfied for the choice of a stream function  

( , )x y  such that
 

yu 
  and  xv  

        

                                   (2.7) 

In order to transform the equations (2.2) to (2.5) into a set of ordinary differential equations, the following 

similarity transformations and dimensionless variables are introduced. 
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where  f  be dimensionless stream function,    be dimensionless temperature,    be dimensionless 

concentration,  be similarity variable, K be local permeability parameter, A be local unsteadiness parameter, 

Pr be local Prandtl number, Nb  be local Brownian motion parameter, Nt be local thermophoresis parameter, Le 

be local Lewis number, Q be local heat generation or absorption parameter, γ be local conjugate parameter for 

Newtonian heating and  be local conjugate parameter for concentration. 

After the substitution of these transformations (2.8) along with the equation (2.7) into the Equations (2.2)-(2.6), 

the resulting non-linear ordinary differential equations are written as  
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The transformed boundary conditions can be written as 
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where primes denote differentiation with respect to 𝜂
 

 Physical quantities of interest are Local skin friction coefficient fC , the heat transfer rate and mass 

transfer rate are the main physical characteristics of the problem, which are described in terms of local Nusselt 

number and local Sherwood number, respectively, defined as 
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where 
xy  is the shear stress at the stretching sheet, wq  and mq is the heat and mass flux, respectively.  

 Thus, we get  
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Where 
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 be local Reynolds number based on the stretching velocity  ,wu x t . 
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III. SOLUTION OF THE PROBLEM 
For solving equations (2.9)–(2.11), a step by step integration method i.e. Runge–Kutta method has been 

applied. For carrying in the numerical integration, the equations are reduced to a set of first order differential 

equation. For performing this we make the following substitutions:  
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together with the boundary conditions are given by (2.12) taking the form 
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In order to carry out the step by step integration of equations (2.9) –(2.11), Gills procedures as given in Ralston 

and Wilf (1960) have been used. To start the integration it is necessary to provide all the values of 

1 2 3 4 5 6, , , , ,y y y y y y  at  0  from which point, the forward integration has been carried out but from the 

boundary conditions it is seen that the values of 3 4 7, ,y y y  are not known. So we are to provide such values of 

3 4 7, ,y y y along with the known values of the other function at 0  as would satisfy the boundary conditions 

as to a prescribed accuracy after step by step integrations are performed. Since the values of 3 4 7, ,y y y

which are supplied are merely rough values, some corrections have to be made in these values in order that the 

boundary conditions to   are satisfied. These corrections in the values of 3 4 7, ,y y y  are taken care of by 

a self-iterative procedure which can for convenience be called ‘‘Corrective procedure’’.  

 

IV. RESULTS AND DISCUSSION 
In order to acquire physical understanding, the velocɨty, temperature & concentration distributions have 

been illustrated by varying the numerical values of the various parameters demonstrated in the present problem. 

The numerical results are tabulated and exhibited with the graphical illustration. 

Figures 1(a)-1(c) establishes the different values of permeability of the porous medium parameter (K) on 

velocɨty, temperature and concentration profiles, respectively. The values of K is taken to be K = 0.1, 0.6, 1.2, 2 

and the other parameters are fixed as A = -1, Nt = 0.1, Nb = 0.1, Q = 0.2, γ = 0.3, β = 0.3, Le = 1, Pr = 0.7 and S 

= 2. It is noticed that, with the hype in the values of K from 0.1 to 2.0 then the velocity decreases consequently 

decreases the thickness of momentum boundary layer but the temperature and concentration of the fluid 

increases. The reason for this, the porous medium obstructs the fluid to move freely through the boundary layer. 

This leads to the raise in the thickness of thermal and concentration boundary layer. Figures 2(a)-2(c) establishes 

the different values of unsteadiness parameter (A) on velocɨty, temperature and concentration profiles, 

respectively. The values of A is taken to be A = - 1, - 2, - 3, - 4 and the other parameters are fixed as K = 0.5, Nt 

= 0.1, Nb = 0.1, Q = 0.2, γ = 0.3, β = 0.3, Le = 1, Pr = 0.7 and S = 2.  It is noticed that, with the hype in the 

values of A from -4 to -1 then the velocity, temperature and concentration profiles increases consequently 

enhanced the thickness of momentum, thermal and concentration boundary layer. 

The velocɨty, temperature and concentration distributions for suction parameter S are illustrated in Figures 

3(a) -3(c). The values of S is taken to be S = 2, 3, 4, 5 and the other parameters are fixed as A = -1, K = 0.5, Nt 

= 0.1, Nb = 0.1, Q = 0.2, γ = 0.3, β = 0.3, Le = 1 and Pr = 0.7. It can be viewed that suction will lead to fast 

cooling of the surface. This is remarkably important in numerous industrial applications. It is observed that the 

velocity, temperature and concentration diminish with raising the values of S. This results in a reduction in the 

thickness of momentum, thermal and concentration boundary layers.   

The influence of thermophoresis parameter (Nt) on the temperature and concentration fields is shown in 

figures 4(a) and 4(b) respectively. The values of Nt is taken to be Nt = 0.1, 0.3, 0.5, 0.8 and the other parameters 

are fixed as A = -1, K = 0.5, Nb = 0.1, Q = 0.2, γ = 0.3, β = 0.3, Le = 1, Pr = 0.7 and S = 2.  It is conformed that 

enhances the values of Nt from 0.1 to 0.8, the temperature & concentration of the fluid increases. This leads to 
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enhance the thickness of thermal and concèntration boundary layer. The effect of Brownian motion parameter 

(Nb) on the temperature and concentration fields is illustrated in figures 5(a) & 5(b) respectively. The values of 

Nb is taken to be Nb = 0.1, 0.3, 0.5, 0.8 and the other parameters are fixed as A = -1, K = 0.5, Nt = 0.1, Q = 0.2, 

γ = 0.3, β = 0.3, Le = 1, Pr = 0.7 and S = 2.  It is conformed that enhances the values of Nb from 0.1 to 0.8, the 

temperature profile increases but concentration decreases. In the system nanofluid, the Brownian motion takes a 

place in the presence of nànoparticles. When hype the values of Nb, the Brownian motion is affected and the 

concèntration boundary layer thickness reduces and accordingly the heat transfer characteristics of the fluid 

changes. 

The effect of heat generation or absorption parameter (Q) on temperature and concentration fields is 

depicted in figures 6(a) and 6(b), respectively. The values of Q is taken to be Q = - 0.5, - 0.2, 0, 0.2, 0.5 and the 

other parameters are fixed as A = -1, K = 0.5, Nt = 0.1, Nb = 0.1, γ = 0.3, β = 0.3, Le = 1, Pr = 0.7 and S = 2.  It 

is observed that the thickness of thermal and concentration boundary layer increases with raising the values of δ 

from -0.5 to 0.5. Figures 7(a) and 7(b) depicts the various values of conjugate parameter for Newtonian heating 

(γ) on the temperature and concentration profiles, respectively. The values of γ is taken to be γ = 0.1, 0.2, 0.3, 

0.4 and the other parameters are fixed as A = -1, K = 0.5, Nt = 0.1, Nb = 0.1, Q = 0.2, β = 0.3, Le = 1, Pr = 0.7 

and S = 2. It can be understood that raising the values of γ from 0.1 to 0.4 the resultant temperature and 

concentration increases consequently thickness of thermal and concèntration boundary layer enhances. 

Figures 8(a) and 8(b) depicts the various values of conjugate parameter for concentration (β) on the temperature 

and concentration fields, respectively. The values of β is taken to be β = 0.1, 0.5, 0.8, 1 and the other parameters 

are fixed as A = -1, K = 0.5, Nt = 0.1, Nb = 0.1, Q = 0.2, γ = 0.3, β = 0.3, Le = 1, Pr = 0.7 and S = 2. It is 

obtained that raising the values of β from 0.1 to 1.0, the temperature of the fluid increases. This leads to enhance 

the thermal and concentration boundary layer thickness. The effect of Prandtl number Pr on temperature and 

concentration fields is shown in figures 9(a) & 9(b) respectively. The values of Pr is taken to be Pr = 1, 2, 3, 4 

and the other parameters are fixed as A = -1, K = 0.5, Nt = 0.1, Nb = 0.1, Q = 0.2, γ = 0.3, β = 0.3, Le = 1 and S 

= 2. Physically, increasing Prandtl number becomes a key factor to reduce the thickness of thermal and 

nanoparcle concèntration boundary layers. The effect of Lewis number Le verses concentration profile is shown 

in figure 10 respectively. The values of Le is taken to be Le = 1, 2, 3, 4 and the other parameters are fixed as A 

= -1, K = 0.5, Nt = 0.1, Nb = 0.1, Q = 0.2, γ = 0.3, β = 0.3, Pr = 0.7 and S = 2. It can be obtained that the 

concentration of the fluid decreases with raising the values of Le from 1 to 4.  

In order to standardize the method used in the present study and to decide the accuracy of the present analysis 

and to compare with the results available (Khan et al. (2015), Wang (1989), Khan and Pop (2010), and Gorla 

and Sidawi (1994)) relating to the local skin-friction coefficient in the absence of porous medium and found in 

an agreement (Table.1).  

Table 2 reveals the magnitude of skin fraction on different values of A, S and K. It is noticed that with the 

raise in values of A from -4 to -1, the resultant values of then ''(0)f  increases. With the raise in the values of S 

from 2 to 5, then the resultant values of ''(0)f   increases and with the raise in the values of K from 0.5 to 2, 

then the resultant values of ''(0)f   decreases. Table 3 reveals the local Nusselt number and local Sherwood 

number on different parameters. It is noticed that with the raise in values of A from -4 to -1, then the resultant 

values of '(0)   and  '(0)  increases. With the raise in the values of Nt from 0.1 to 0.7, then the resultant 

values of  '(0)   and  '(0)   increases. With the raise in values of Nb from 0.1 to 1.0, the resultant values 

of '(0)    increases whereas '(0)   decreases. With the raise in the values of Q from -0.5 to 0.5, the 

resultant values of '(0)   and '(0)  is to be increases. With the raise in the values of S from 2 to 5, the 

resultant values of '(0)  and '(0)   is to be decreases. With the raise in the values of Le from 1 to 4, the 

resultant values of '(0)   and '(0)   is to be decreases. With the raise in the values of Pr from 0.7 to 3, the 

resultant values of '(0)  and '(0)   is to be decreases. With the raise in the values of K from 0.5 to 2, the 

resultant values of '(0)   and '(0)   is to be increases. With the raise in the values of γ from 0.1 to 1.0, the 

resultant values of '(0)   and '(0)  is to be increases. Finally, with the raise in the values of β from 0.1 to 

1, the resultant values of '(0)  and '(0)  is to be increases. 

 

V. CONCLUSIONS 
The two-dimensional forced convection in unsteady boundary layer flow of nanofluid over a permeable 

shrinking sheet in the presence of porous medium, hear generation/absorption and Newtonian heating is 

investigated. From the study, the following remarks can be summarized. 
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1. Thickness of velocity, temperature and concentration boundary layer decreases with a rising the values of 

mass suction parameter. 

2. Velocity decreases whereas temperature and concentration increases with increases the values of 

permeability parameter and unsteadiness parameter. 

3. Temperature and concentration increases with an increase thermophoresis parameter, heat generation or 

absorption parameter, conjugate parameter for Newtonian heating and conjugate parameter for 

concentration. Temperature increases and concentration decreases with an increase Brownian motion 

parameter. 

4. Skin-friction coefficient increases with increases the values of suction parameter and unsteadiness 

parameter and opposite results were found in permeability parameter.  

5. Local Nusselt number and local Sherwood number increases with increases thermophoresis parameter, heat 

generation or absorption parameter, conjugate parameter for Newtonian heating and conjugate parameter 

for concentration whereas it decrease with raising the values of suction parameter, Lewis number and 

Prandtl number. 

6. Local Nusselt number increases but local Sherwood number decreases with increasing the values of 

Brownian motion parameter.  

 
Fig. 1(a) Velocity for different K 

0 1 2 3 4 5
-1

-0.8

-0.6

-0.4

-0.2

0



f 
' (


)

A = -1, Nt=Nb=0.1, Q=0.2, ==0.3, Le=1, Pr=0.7, S =2

K = 0.1, 0.6, 1.2, 2



M.Lavanya et al. Int. Journal of Engineering Research and Applications                       www.ijera.com 

ISSN: 2248-9622, Vol. 6, Issue 2, (Part - 1) February 2016, pp.95-109  

 www.ijera.com                                                                                                                                101|P a g e  

 
Fig. 1(b) Temperature for different K 

 

 
Fig. 1(c) Concentration for different K 
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Fig. 2(a) Velocity for different A 

 

 
Fig.2(a) Temperature for different A 

 
Fig.2(c) Concentration for different A 
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Fig.3(a) Velocity for different S 

 
Fig.3(b) Temperature for different S 

 

 
Fig.3(c) Concentration for different S 
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Fig.4(a) Temperature for different Nt 

 

 
Fig.4(b) Concentration for different Nt 

 
Fig.5(a) Temperature for different Nb 
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Fig.5(b) Concentration for different Nb 

 
Fig.6(a) Temperature for different Q 

 

 
Fig.6(b) Concentration for different Q 

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6




(

)

K=0.5, S=2, Nt=0.1, Q=0.2, ==0.3, Le=1, Pr=0.7, A = -2

Nb = 0.1, 0.3, 0.5, 0.8

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8




 (


)

Q = -0.5, -0.2, 0, 0.2, 0.5

K = 0.5, S=2, Nt=Nb=0.1, ==0.3, Le=1, Pr=0.7, A =-2

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6




(

)

Q = -0.5, -0.2, 0, 0.2, 0.5

K=0.5, S=2, Nt=Nb=0.1, ==0.3, Le=1, Pr=0.7, A = -2



M.Lavanya et al. Int. Journal of Engineering Research and Applications                       www.ijera.com 

ISSN: 2248-9622, Vol. 6, Issue 2, (Part - 1) February 2016, pp.00-00  

 www.ijera.com                                                                                                                                    

106|P a g e  

 
Fig.7(a) Temperature for different γ 

 

 
Fig.7(b) Concentration for different γ 

 
Fig.8(a) Temperature for different β 
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Fig.8(b) Concentration for different β 

 
Fig.9(a) Temperature for different Pr 

 

 
Fig.9(b) Concentration for different Pr 
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Fig.10 Concentration for different Le 

 

Table 1. Comparison of the present results of local Nusselt number '(0)  for Nt=Nb=Q=γ=β=Le=A=0 

Pr '(0)  

Present Study Khan et al. 

(2015) 

Khan and Pop 

(2010) 

Wang (1989) Gorla and 

Sidawi (1994) 

0.7 

2 

7 

20 

0.454470 

0.911353 

1.895400 

3.353902 

0.45392 

0.91135 

1.89543 

3.35395 

0.4539 

0.9113 

1.8954 

3.3539 

0.4539 

0.9114 

1.8954 

3.3539 

0.5349 

0.9114 

1.8905 

3.3539 

 

Table 2 Numerical values of ''(0)f for various values of A, S and K when Nt=Nb=0.1, Pr=0.7, Le=1, 

Q=0.2, γ=β=0.3.
 

A S K ''(0)f  

-1 

-2 

-3 

-4 

2 

2 

2 

2 

0.5 

0.5 

0.5 

0.5 

2.196829 

1.969200 

1.732552 

1.487845 

-2 

-2 

-2 

3 

4 

5 

0.5 

0.5 

0.5 

2.987691 

3.993987 

4.996660 

-2 

-2 

-2 

2 

2 

2 

1.0 

1.5 

2.0 

0.350960 

0.324649 

0.316211 

 

Table 3 Numerical values of '(0), '(0)   for various values of A, Nt, Nb, Q, S, Le, Pr, K, γ and β.
 

A Nt Nb Q S Le Pr K γ β '(0)  '(0)  

-1 

-2 

-3 

-4 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

0.2 

0.2 

0.2 

0.2 

2 

2 

2 

2 

1 

1 

1 

1 

0.7 

0.7 

0.7 

0.7 

0.5 

0.5 

0.5 

0.5 

0.3 

0.3 

0.3 

0.3 

0.3 

0.3 

0.3 

0.3 

0.388167 

0.374842 

0.366859 

0.361283 

0.414886 

0.397972 

0.387530 

0.380142 

-2 

-2 

-2 

0.3 

0.5 

0.7 

0.1 

0.1 

0.1 

0.2 

0.2 

0.2 

2 

2 

2 

1 

1 

1 

0.7 

0.7 

0.7 

0.5 

0.5 

0.5 

0.3 

0.3 

0.3 

0.3 

0.3 

0.3 

0.377387 

0.380147 

0.383156 

0.498900 

0.600252 

0.702108 

-2 

-2 

-2 

0.1 

0.1 

0.1 

0.3 

0.5 

1.0 

0.2 

0.2 

0.2 

2 

2 

2 

1 

1 

1 

0.7 

0.7 

0.7 

0.5 

0.5 

0.5 

0.3 

0.3 

0.3 

0.3 

0.3 

0.3 

0.376121 

0.377431 

0.380852 

0.364442 

0.357736 

0.352707 
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-2 

-2 

-2 

-2 

-2 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

-0.5 

-0.2 

0.0 

0.2 

0.5 

2 

2 

2 

2 

2 

1 

1 

1 

1 

1 

0.7 

0.7 

0.7 

0.7 

0.7 

0.5 

0.5 

0.5 

0.5 

0.5 

0.3 

0.3 

0.3 

0.3 

0.3 

0.3 

0.3 

0.3 

0.3 

0.3 

0.362822 

0.367212 

0.370717 

0.374842 

0.382652 

0.397501 

0.397671 

0.397809 

0.397972 

0.398287 

-2 

-2 

-2 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

0.2 

0.2 

0.2 

3 

4 

5 

1 

1 

1 

0.7 

0.7 

0.7 

0.5 

0.5 

0.5 

0.3 

0.3 

0.3 

0.3 

0.3 

0.3 

0.347960 

0.335184 

0.327737 

0.365112 

0.348472 

0.338486 

-2 

-2 

-2 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

0.2 

0.2 

0.2 

2 

2 

2 

2 

3 

4 

0.7 

0.7 

0.7 

0.5 

0.5 

0.5 

0.3 

0.3 

0.3 

0.3 

0.3 

0.3 

0.374431 

0.374263 

0.374169 

0.348114 

0.331861 

0.323801 

-2 

-2 

-2 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

0.2 

0.2 

0.2 

2 

2 

2 

1 

1 

1 

1 

2 

3 

0.5 

0.5 

0.5 

0.3 

0.3 

0.3 

0.3 

0.3 

0.3 

0.350960 

0.324649 

0.316211 

0.397027 

0.396188 

0.395942 

-2 

-2 

-2 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

0.2 

0.2 

0.2 

2 

2 

2 

1 

1 

1 

0.7 

0.7 

0.7 

1.0 

1.5 

2.0 

0.3 

0.3 

0.3 

0.3 

0.3 

0.3 

0.376209 

0.377042 

0.377658 

0.399735 

0.400808 

0.401601 

-2 

-2 

-2 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

0.2 

0.2 

0.2 

2 

2 

2 

1 

1 

1 

0.7 

0.7 

0.7 

0.5 

0.5 

0.5 

0.6 

0.8 

1.0 

0.3 

0.3 

0.3 

1.014202 

1.820552 

4.427824 

0.483246 

0.589735 

0.924805 

-2 

-2 

-2 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

0.2 

0.2 

0.2 

2 

2 

2 

1 

1 

1 

0.7 

0.7 

0.7 

0.5 

0.5 

0.5 

0.3 

0.3 

0.3 

0.5 

0.8 

1.0 

0.375470 

0.376777 

0.378045 

0.741888 

1.443634 

2.108415 
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